(as of Sep 10, 2024 16:43:26 UTC – Details)
Build smarter systems by combining artificial intelligence and the Internet of Things—two of the most talked about topics today
Key FeaturesLeverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT dataProcess IoT data and predict outcomes in real time to build smart IoT modelsCover practical case studies on industrial IoT, smart cities, and home automationBook DescriptionThere are many applications that use data science and analytics to gain insights from terabytes of data. These apps, however, do not address the challenge of continually discovering patterns for IoT data. In Hands-On Artificial Intelligence for IoT, we cover various aspects of artificial intelligence (AI) and its implementation to make your IoT solutions smarter.
This book starts by covering the process of gathering and preprocessing IoT data gathered from distributed sources. You will learn different AI techniques such as machine learning, deep learning, reinforcement learning, and natural language processing to build smart IoT systems. You will also leverage the power of AI to handle real-time data coming from wearable devices. As you progress through the book, techniques for building models that work with different kinds of data generated and consumed by IoT devices such as time series, images, and audio will be covered. Useful case studies on four major application areas of IoT solutions are a key focal point of this book. In the concluding chapters, you will leverage the power of widely used Python libraries, TensorFlow and Keras, to build different kinds of smart AI models.
By the end of this book, you will be able to build smart AI-powered IoT apps with confidence.
What you will learnApply different AI techniques including machine learning and deep learning using TensorFlow and KerasAccess and process data from various distributed sourcesPerform supervised and unsupervised machine learning for IoT dataImplement distributed processing of IoT data over Apache Spark using the MLLib and H2O.ai platformsForecast time-series data using deep learning methodsImplementing AI from case studies in Personal IoT, Industrial IoT, and Smart CitiesGain unique insights from data obtained from wearable devices and smart devicesWho this book is forIf you are a data science professional or a machine learning developer looking to build smart systems for IoT, Hands-On Artificial Intelligence for IoT is for you. If you want to learn how popular artificial intelligence (AI) techniques can be used in the Internet of Things domain, this book will also be of benefit. A basic understanding of machine learning concepts will be required to get the best out of this book.
Table of ContentsPrinciples and Foundations of IoT and AI Data Access and Distributed Processing for IoTMachine Learning for IoTDeep Learning for IoTGenetic Algorithms for IoTReinforcement Learning for IoTGAN for IoTDistributed AI for IoTPersonal and Home and IoTAI for Industrial IoTAI for Smart Cities IoTCombining It All TogetherASIN ‏ : ‎ B07C5YMBZT
Publisher ‏ : ‎ Packt Publishing; 1st edition (January 31, 2019)
Publication date ‏ : ‎ January 31, 2019
Language ‏ : ‎ English
File size ‏ : ‎ 23953 KB
Text-to-Speech ‏ : ‎ Enabled
Screen Reader ‏ : ‎ Supported
Enhanced typesetting ‏ : ‎ Enabled
X-Ray ‏ : ‎ Not Enabled
Word Wise ‏ : ‎ Not Enabled
Sticky notes ‏ : ‎ On Kindle Scribe
Print length ‏ : ‎ 392 pages